extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic3)⋊1C22 = M4(2)⋊D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 8- | (C4xDic3):1C2^2 | 192,305 |
(C4×Dic3)⋊2C22 = D12⋊1D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 24 | 8+ | (C4xDic3):2C2^2 | 192,306 |
(C4×Dic3)⋊3C22 = C42⋊3D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 4 | (C4xDic3):3C2^2 | 192,380 |
(C4×Dic3)⋊4C22 = M4(2)⋊24D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 4 | (C4xDic3):4C2^2 | 192,698 |
(C4×Dic3)⋊5C22 = D12⋊18D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 24 | 8+ | (C4xDic3):5C2^2 | 192,757 |
(C4×Dic3)⋊6C22 = D12.39D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 8+ | (C4xDic3):6C2^2 | 192,761 |
(C4×Dic3)⋊7C22 = (C6×D4)⋊9C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 4 | (C4xDic3):7C2^2 | 192,795 |
(C4×Dic3)⋊8C22 = 2+ 1+4⋊6S3 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 24 | 8+ | (C4xDic3):8C2^2 | 192,800 |
(C4×Dic3)⋊9C22 = 2+ 1+4.4S3 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 8- | (C4xDic3):9C2^2 | 192,801 |
(C4×Dic3)⋊10C22 = C42⋊9D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):10C2^2 | 192,1080 |
(C4×Dic3)⋊11C22 = C42⋊13D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):11C2^2 | 192,1104 |
(C4×Dic3)⋊12C22 = C24.67D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):12C2^2 | 192,1145 |
(C4×Dic3)⋊13C22 = C24.43D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):13C2^2 | 192,1146 |
(C4×Dic3)⋊14C22 = C24⋊8D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):14C2^2 | 192,1149 |
(C4×Dic3)⋊15C22 = C24.44D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):15C2^2 | 192,1150 |
(C4×Dic3)⋊16C22 = C24.45D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):16C2^2 | 192,1151 |
(C4×Dic3)⋊17C22 = C24.46D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):17C2^2 | 192,1152 |
(C4×Dic3)⋊18C22 = C24⋊9D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):18C2^2 | 192,1153 |
(C4×Dic3)⋊19C22 = C24.47D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):19C2^2 | 192,1154 |
(C4×Dic3)⋊20C22 = C4⋊C4⋊21D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):20C2^2 | 192,1165 |
(C4×Dic3)⋊21C22 = C6.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):21C2^2 | 192,1166 |
(C4×Dic3)⋊22C22 = D12⋊19D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):22C2^2 | 192,1168 |
(C4×Dic3)⋊23C22 = D12⋊20D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):23C2^2 | 192,1171 |
(C4×Dic3)⋊24C22 = C6.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):24C2^2 | 192,1172 |
(C4×Dic3)⋊25C22 = C6.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):25C2^2 | 192,1176 |
(C4×Dic3)⋊26C22 = C6.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):26C2^2 | 192,1179 |
(C4×Dic3)⋊27C22 = C4⋊C4⋊26D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):27C2^2 | 192,1186 |
(C4×Dic3)⋊28C22 = D12⋊21D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):28C2^2 | 192,1189 |
(C4×Dic3)⋊29C22 = C6.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):29C2^2 | 192,1196 |
(C4×Dic3)⋊30C22 = C6.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):30C2^2 | 192,1203 |
(C4×Dic3)⋊31C22 = C6.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):31C2^2 | 192,1213 |
(C4×Dic3)⋊32C22 = C4⋊C4⋊28D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):32C2^2 | 192,1215 |
(C4×Dic3)⋊33C22 = C6.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):33C2^2 | 192,1216 |
(C4×Dic3)⋊34C22 = C6.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):34C2^2 | 192,1225 |
(C4×Dic3)⋊35C22 = C42⋊20D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):35C2^2 | 192,1233 |
(C4×Dic3)⋊36C22 = C42⋊22D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):36C2^2 | 192,1237 |
(C4×Dic3)⋊37C22 = C42⋊24D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):37C2^2 | 192,1242 |
(C4×Dic3)⋊38C22 = C42⋊25D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):38C2^2 | 192,1263 |
(C4×Dic3)⋊39C22 = C42⋊28D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):39C2^2 | 192,1274 |
(C4×Dic3)⋊40C22 = C24.49D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):40C2^2 | 192,1357 |
(C4×Dic3)⋊41C22 = D4×C3⋊D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):41C2^2 | 192,1360 |
(C4×Dic3)⋊42C22 = C24.52D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):42C2^2 | 192,1364 |
(C4×Dic3)⋊43C22 = C24.53D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):43C2^2 | 192,1365 |
(C4×Dic3)⋊44C22 = C6.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):44C2^2 | 192,1388 |
(C4×Dic3)⋊45C22 = C6.1462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):45C2^2 | 192,1389 |
(C4×Dic3)⋊46C22 = C24.35D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):46C2^2 | 192,1045 |
(C4×Dic3)⋊47C22 = C24.38D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):47C2^2 | 192,1049 |
(C4×Dic3)⋊48C22 = C24.41D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):48C2^2 | 192,1053 |
(C4×Dic3)⋊49C22 = C24.42D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):49C2^2 | 192,1054 |
(C4×Dic3)⋊50C22 = C42⋊12D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):50C2^2 | 192,1086 |
(C4×Dic3)⋊51C22 = C42⋊14D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):51C2^2 | 192,1106 |
(C4×Dic3)⋊52C22 = C42⋊18D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):52C2^2 | 192,1115 |
(C4×Dic3)⋊53C22 = C42⋊19D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):53C2^2 | 192,1119 |
(C4×Dic3)⋊54C22 = C6.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):54C2^2 | 192,1169 |
(C4×Dic3)⋊55C22 = C6.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):55C2^2 | 192,1217 |
(C4×Dic3)⋊56C22 = C6.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):56C2^2 | 192,1218 |
(C4×Dic3)⋊57C22 = C42⋊23D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):57C2^2 | 192,1238 |
(C4×Dic3)⋊58C22 = C42⋊26D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):58C2^2 | 192,1264 |
(C4×Dic3)⋊59C22 = C24.83D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):59C2^2 | 192,1350 |
(C4×Dic3)⋊60C22 = (C2×D4)⋊43D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):60C2^2 | 192,1387 |
(C4×Dic3)⋊61C22 = S3×C4≀C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 24 | 4 | (C4xDic3):61C2^2 | 192,379 |
(C4×Dic3)⋊62C22 = C2×D12⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):62C2^2 | 192,697 |
(C4×Dic3)⋊63C22 = C2×Q8⋊3Dic3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):63C2^2 | 192,794 |
(C4×Dic3)⋊64C22 = C2×Dic3⋊5D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):64C2^2 | 192,1062 |
(C4×Dic3)⋊65C22 = S3×C4⋊1D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):65C2^2 | 192,1273 |
(C4×Dic3)⋊66C22 = C2×D4×Dic3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):66C2^2 | 192,1354 |
(C4×Dic3)⋊67C22 = C2×C23.12D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):67C2^2 | 192,1356 |
(C4×Dic3)⋊68C22 = C2×C12⋊3D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):68C2^2 | 192,1362 |
(C4×Dic3)⋊69C22 = C2×C12.23D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):69C2^2 | 192,1373 |
(C4×Dic3)⋊70C22 = C2×C42⋊2S3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):70C2^2 | 192,1031 |
(C4×Dic3)⋊71C22 = C2×C23.16D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):71C2^2 | 192,1039 |
(C4×Dic3)⋊72C22 = C2×C23.8D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):72C2^2 | 192,1041 |
(C4×Dic3)⋊73C22 = C2×Dic3⋊4D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):73C2^2 | 192,1044 |
(C4×Dic3)⋊74C22 = C2×C23.11D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):74C2^2 | 192,1050 |
(C4×Dic3)⋊75C22 = C2×C4⋊C4⋊7S3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):75C2^2 | 192,1061 |
(C4×Dic3)⋊76C22 = C2×C4⋊C4⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):76C2^2 | 192,1071 |
(C4×Dic3)⋊77C22 = S3×C42⋊C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):77C2^2 | 192,1079 |
(C4×Dic3)⋊78C22 = C4×S3×D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):78C2^2 | 192,1103 |
(C4×Dic3)⋊79C22 = S3×C4.4D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):79C2^2 | 192,1232 |
(C4×Dic3)⋊80C22 = S3×C42⋊2C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 48 | | (C4xDic3):80C2^2 | 192,1262 |
(C4×Dic3)⋊81C22 = C2×C23.26D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):81C2^2 | 192,1345 |
(C4×Dic3)⋊82C22 = C2×C4×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3):82C2^2 | 192,1347 |
(C4×Dic3)⋊83C22 = S3×C2×C42 | φ: trivial image | 96 | | (C4xDic3):83C2^2 | 192,1030 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic3).1C22 = D12.4D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 8- | (C4xDic3).1C2^2 | 192,311 |
(C4×Dic3).2C22 = D12.5D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 8+ | (C4xDic3).2C2^2 | 192,312 |
(C4×Dic3).3C22 = D4.S3⋊C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).3C2^2 | 192,316 |
(C4×Dic3).4C22 = Dic3.D8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).4C2^2 | 192,318 |
(C4×Dic3).5C22 = D4⋊Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).5C2^2 | 192,320 |
(C4×Dic3).6C22 = Dic6⋊2D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).6C2^2 | 192,321 |
(C4×Dic3).7C22 = D4.Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).7C2^2 | 192,322 |
(C4×Dic3).8C22 = C4⋊C4.D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).8C2^2 | 192,323 |
(C4×Dic3).9C22 = C12⋊Q8⋊C2 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).9C2^2 | 192,324 |
(C4×Dic3).10C22 = D4.2Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).10C2^2 | 192,325 |
(C4×Dic3).11C22 = Dic6.D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).11C2^2 | 192,326 |
(C4×Dic3).12C22 = D4⋊S3⋊C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).12C2^2 | 192,344 |
(C4×Dic3).13C22 = D12⋊3D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).13C2^2 | 192,345 |
(C4×Dic3).14C22 = D12.D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).14C2^2 | 192,346 |
(C4×Dic3).15C22 = C3⋊Q16⋊C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).15C2^2 | 192,348 |
(C4×Dic3).16C22 = Q8⋊2Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).16C2^2 | 192,350 |
(C4×Dic3).17C22 = Q8⋊3Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).17C2^2 | 192,352 |
(C4×Dic3).18C22 = (C2×C8).D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).18C2^2 | 192,353 |
(C4×Dic3).19C22 = Dic3⋊Q16 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).19C2^2 | 192,354 |
(C4×Dic3).20C22 = Q8.3Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).20C2^2 | 192,355 |
(C4×Dic3).21C22 = (C2×Q8).36D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).21C2^2 | 192,356 |
(C4×Dic3).22C22 = Dic6.11D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).22C2^2 | 192,357 |
(C4×Dic3).23C22 = Q8.4Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).23C2^2 | 192,358 |
(C4×Dic3).24C22 = Q8⋊3(C4×S3) | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).24C2^2 | 192,376 |
(C4×Dic3).25C22 = Dic3⋊SD16 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).25C2^2 | 192,377 |
(C4×Dic3).26C22 = D12.12D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).26C2^2 | 192,378 |
(C4×Dic3).27C22 = Dic12⋊9C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).27C2^2 | 192,412 |
(C4×Dic3).28C22 = Dic6⋊Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).28C2^2 | 192,413 |
(C4×Dic3).29C22 = C24⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).29C2^2 | 192,415 |
(C4×Dic3).30C22 = Dic6.Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).30C2^2 | 192,416 |
(C4×Dic3).31C22 = D24⋊9C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).31C2^2 | 192,428 |
(C4×Dic3).32C22 = D12⋊Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).32C2^2 | 192,429 |
(C4×Dic3).33C22 = D12.Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).33C2^2 | 192,430 |
(C4×Dic3).34C22 = Dic3.Q16 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).34C2^2 | 192,434 |
(C4×Dic3).35C22 = C24⋊4Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).35C2^2 | 192,435 |
(C4×Dic3).36C22 = Dic6.2Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).36C2^2 | 192,436 |
(C4×Dic3).37C22 = C24⋊C2⋊C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).37C2^2 | 192,448 |
(C4×Dic3).38C22 = D12⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).38C2^2 | 192,449 |
(C4×Dic3).39C22 = D12.2Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).39C2^2 | 192,450 |
(C4×Dic3).40C22 = D24⋊10C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 4 | (C4xDic3).40C2^2 | 192,453 |
(C4×Dic3).41C22 = C24.54D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 4 | (C4xDic3).41C2^2 | 192,704 |
(C4×Dic3).42C22 = Dic3⋊D8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).42C2^2 | 192,709 |
(C4×Dic3).43C22 = D8⋊Dic3 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).43C2^2 | 192,711 |
(C4×Dic3).44C22 = (C6×D8).C2 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).44C2^2 | 192,712 |
(C4×Dic3).45C22 = C24⋊11D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).45C2^2 | 192,713 |
(C4×Dic3).46C22 = Dic3⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).46C2^2 | 192,721 |
(C4×Dic3).47C22 = Dic3⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).47C2^2 | 192,722 |
(C4×Dic3).48C22 = SD16⋊Dic3 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).48C2^2 | 192,723 |
(C4×Dic3).49C22 = (C3×D4).D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).49C2^2 | 192,724 |
(C4×Dic3).50C22 = (C3×Q8).D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).50C2^2 | 192,725 |
(C4×Dic3).51C22 = C24.31D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).51C2^2 | 192,726 |
(C4×Dic3).52C22 = C24⋊9D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).52C2^2 | 192,735 |
(C4×Dic3).53C22 = Dic3⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).53C2^2 | 192,741 |
(C4×Dic3).54C22 = Q16⋊Dic3 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).54C2^2 | 192,743 |
(C4×Dic3).55C22 = (C2×Q16)⋊S3 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).55C2^2 | 192,744 |
(C4×Dic3).56C22 = C24.37D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).56C2^2 | 192,749 |
(C4×Dic3).57C22 = D8⋊4Dic3 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 4 | (C4xDic3).57C2^2 | 192,756 |
(C4×Dic3).58C22 = D12.38D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 8- | (C4xDic3).58C2^2 | 192,760 |
(C4×Dic3).59C22 = D12.40D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 8- | (C4xDic3).59C2^2 | 192,764 |
(C4×Dic3).60C22 = 2- 1+4⋊4S3 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 8+ | (C4xDic3).60C2^2 | 192,804 |
(C4×Dic3).61C22 = 2- 1+4.2S3 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 48 | 8- | (C4xDic3).61C2^2 | 192,805 |
(C4×Dic3).62C22 = C6.72+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).62C2^2 | 192,1059 |
(C4×Dic3).63C22 = C6.82+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).63C2^2 | 192,1063 |
(C4×Dic3).64C22 = C6.2- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).64C2^2 | 192,1066 |
(C4×Dic3).65C22 = C6.52- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).65C2^2 | 192,1072 |
(C4×Dic3).66C22 = C6.112+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).66C2^2 | 192,1073 |
(C4×Dic3).67C22 = C42.87D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).67C2^2 | 192,1075 |
(C4×Dic3).68C22 = C42.90D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).68C2^2 | 192,1078 |
(C4×Dic3).69C22 = C42.94D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).69C2^2 | 192,1088 |
(C4×Dic3).70C22 = C42.95D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).70C2^2 | 192,1089 |
(C4×Dic3).71C22 = D4×Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).71C2^2 | 192,1096 |
(C4×Dic3).72C22 = D4⋊5Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).72C2^2 | 192,1098 |
(C4×Dic3).73C22 = C42.106D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).73C2^2 | 192,1101 |
(C4×Dic3).74C22 = D4⋊6Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).74C2^2 | 192,1102 |
(C4×Dic3).75C22 = Dic6⋊24D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).75C2^2 | 192,1112 |
(C4×Dic3).76C22 = C42.114D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).76C2^2 | 192,1118 |
(C4×Dic3).77C22 = C42.115D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).77C2^2 | 192,1120 |
(C4×Dic3).78C22 = C42.116D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).78C2^2 | 192,1121 |
(C4×Dic3).79C22 = Q8×Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).79C2^2 | 192,1125 |
(C4×Dic3).80C22 = Dic6⋊10Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).80C2^2 | 192,1126 |
(C4×Dic3).81C22 = C42.122D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).81C2^2 | 192,1127 |
(C4×Dic3).82C22 = Q8⋊6Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).82C2^2 | 192,1128 |
(C4×Dic3).83C22 = Q8⋊7Dic6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).83C2^2 | 192,1129 |
(C4×Dic3).84C22 = C42.125D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).84C2^2 | 192,1131 |
(C4×Dic3).85C22 = C42.126D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).85C2^2 | 192,1133 |
(C4×Dic3).86C22 = C42.133D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).86C2^2 | 192,1141 |
(C4×Dic3).87C22 = C42.134D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).87C2^2 | 192,1142 |
(C4×Dic3).88C22 = C42.136D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).88C2^2 | 192,1144 |
(C4×Dic3).89C22 = Dic6⋊19D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).89C2^2 | 192,1157 |
(C4×Dic3).90C22 = Dic6⋊20D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).90C2^2 | 192,1158 |
(C4×Dic3).91C22 = C4⋊C4.178D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).91C2^2 | 192,1159 |
(C4×Dic3).92C22 = C6.342+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).92C2^2 | 192,1160 |
(C4×Dic3).93C22 = C6.702- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).93C2^2 | 192,1161 |
(C4×Dic3).94C22 = C6.712- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).94C2^2 | 192,1162 |
(C4×Dic3).95C22 = C6.732- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).95C2^2 | 192,1170 |
(C4×Dic3).96C22 = C6.432+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).96C2^2 | 192,1173 |
(C4×Dic3).97C22 = C6.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).97C2^2 | 192,1175 |
(C4×Dic3).98C22 = C6.1152+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).98C2^2 | 192,1177 |
(C4×Dic3).99C22 = C6.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).99C2^2 | 192,1178 |
(C4×Dic3).100C22 = C6.492+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).100C2^2 | 192,1180 |
(C4×Dic3).101C22 = C6.752- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).101C2^2 | 192,1182 |
(C4×Dic3).102C22 = C4⋊C4.187D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).102C2^2 | 192,1183 |
(C4×Dic3).103C22 = C6.152- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).103C2^2 | 192,1184 |
(C4×Dic3).104C22 = C6.162- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).104C2^2 | 192,1187 |
(C4×Dic3).105C22 = D12⋊22D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).105C2^2 | 192,1190 |
(C4×Dic3).106C22 = Dic6⋊21D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).106C2^2 | 192,1191 |
(C4×Dic3).107C22 = Dic6⋊22D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).107C2^2 | 192,1192 |
(C4×Dic3).108C22 = C6.1182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).108C2^2 | 192,1194 |
(C4×Dic3).109C22 = C6.522+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).109C2^2 | 192,1195 |
(C4×Dic3).110C22 = C6.202- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).110C2^2 | 192,1197 |
(C4×Dic3).111C22 = C6.212- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).111C2^2 | 192,1198 |
(C4×Dic3).112C22 = C6.222- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).112C2^2 | 192,1199 |
(C4×Dic3).113C22 = C6.232- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).113C2^2 | 192,1200 |
(C4×Dic3).114C22 = C6.772- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).114C2^2 | 192,1201 |
(C4×Dic3).115C22 = C6.242- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).115C2^2 | 192,1202 |
(C4×Dic3).116C22 = C6.782- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).116C2^2 | 192,1204 |
(C4×Dic3).117C22 = C6.252- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).117C2^2 | 192,1205 |
(C4×Dic3).118C22 = C6.592+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).118C2^2 | 192,1206 |
(C4×Dic3).119C22 = C6.792- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).119C2^2 | 192,1207 |
(C4×Dic3).120C22 = C4⋊C4.197D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).120C2^2 | 192,1208 |
(C4×Dic3).121C22 = C6.802- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).121C2^2 | 192,1209 |
(C4×Dic3).122C22 = C6.812- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).122C2^2 | 192,1210 |
(C4×Dic3).123C22 = C6.822- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).123C2^2 | 192,1214 |
(C4×Dic3).124C22 = C6.632+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).124C2^2 | 192,1219 |
(C4×Dic3).125C22 = C6.652+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).125C2^2 | 192,1221 |
(C4×Dic3).126C22 = C6.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).126C2^2 | 192,1222 |
(C4×Dic3).127C22 = C6.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).127C2^2 | 192,1223 |
(C4×Dic3).128C22 = C6.852- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).128C2^2 | 192,1224 |
(C4×Dic3).129C22 = C6.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).129C2^2 | 192,1226 |
(C4×Dic3).130C22 = C42.138D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).130C2^2 | 192,1229 |
(C4×Dic3).131C22 = C42.139D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).131C2^2 | 192,1230 |
(C4×Dic3).132C22 = C42.140D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).132C2^2 | 192,1231 |
(C4×Dic3).133C22 = C42.141D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).133C2^2 | 192,1234 |
(C4×Dic3).134C22 = C42.234D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).134C2^2 | 192,1239 |
(C4×Dic3).135C22 = C42.143D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).135C2^2 | 192,1240 |
(C4×Dic3).136C22 = C42.144D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).136C2^2 | 192,1241 |
(C4×Dic3).137C22 = Dic6⋊7Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).137C2^2 | 192,1244 |
(C4×Dic3).138C22 = C42.147D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).138C2^2 | 192,1245 |
(C4×Dic3).139C22 = C42.236D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).139C2^2 | 192,1247 |
(C4×Dic3).140C22 = C42.148D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).140C2^2 | 192,1248 |
(C4×Dic3).141C22 = D12⋊7Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).141C2^2 | 192,1249 |
(C4×Dic3).142C22 = C42.237D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).142C2^2 | 192,1250 |
(C4×Dic3).143C22 = C42.150D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).143C2^2 | 192,1251 |
(C4×Dic3).144C22 = C42.152D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).144C2^2 | 192,1253 |
(C4×Dic3).145C22 = C42.153D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).145C2^2 | 192,1254 |
(C4×Dic3).146C22 = C42.155D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).146C2^2 | 192,1256 |
(C4×Dic3).147C22 = C42.156D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).147C2^2 | 192,1257 |
(C4×Dic3).148C22 = C42.157D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).148C2^2 | 192,1258 |
(C4×Dic3).149C22 = C42.160D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).149C2^2 | 192,1261 |
(C4×Dic3).150C22 = C42.189D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).150C2^2 | 192,1265 |
(C4×Dic3).151C22 = C42.161D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).151C2^2 | 192,1266 |
(C4×Dic3).152C22 = C42.163D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).152C2^2 | 192,1268 |
(C4×Dic3).153C22 = C42.165D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).153C2^2 | 192,1271 |
(C4×Dic3).154C22 = C42.166D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).154C2^2 | 192,1272 |
(C4×Dic3).155C22 = Dic6⋊11D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).155C2^2 | 192,1277 |
(C4×Dic3).156C22 = C42.168D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).156C2^2 | 192,1278 |
(C4×Dic3).157C22 = Dic6⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).157C2^2 | 192,1280 |
(C4×Dic3).158C22 = Dic6⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).158C2^2 | 192,1281 |
(C4×Dic3).159C22 = C42.171D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).159C2^2 | 192,1283 |
(C4×Dic3).160C22 = D12⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).160C2^2 | 192,1286 |
(C4×Dic3).161C22 = C42.241D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).161C2^2 | 192,1287 |
(C4×Dic3).162C22 = C42.174D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).162C2^2 | 192,1288 |
(C4×Dic3).163C22 = D12⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).163C2^2 | 192,1289 |
(C4×Dic3).164C22 = C42.176D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).164C2^2 | 192,1290 |
(C4×Dic3).165C22 = C42.177D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).165C2^2 | 192,1291 |
(C4×Dic3).166C22 = C42.178D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).166C2^2 | 192,1292 |
(C4×Dic3).167C22 = C42.179D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).167C2^2 | 192,1293 |
(C4×Dic3).168C22 = C42.180D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).168C2^2 | 192,1294 |
(C4×Dic3).169C22 = C6.422- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).169C2^2 | 192,1371 |
(C4×Dic3).170C22 = Q8×C3⋊D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).170C2^2 | 192,1374 |
(C4×Dic3).171C22 = C6.442- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).171C2^2 | 192,1375 |
(C4×Dic3).172C22 = C6.452- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).172C2^2 | 192,1376 |
(C4×Dic3).173C22 = C6.1042- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).173C2^2 | 192,1383 |
(C4×Dic3).174C22 = C6.1052- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).174C2^2 | 192,1384 |
(C4×Dic3).175C22 = C6.1442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).175C2^2 | 192,1386 |
(C4×Dic3).176C22 = C6.1072- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).176C2^2 | 192,1390 |
(C4×Dic3).177C22 = C6.1482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).177C2^2 | 192,1393 |
(C4×Dic3).178C22 = C24⋊12Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).178C2^2 | 192,238 |
(C4×Dic3).179C22 = C42.243D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).179C2^2 | 192,249 |
(C4×Dic3).180C22 = C24⋊Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).180C2^2 | 192,260 |
(C4×Dic3).181C22 = C42.185D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).181C2^2 | 192,268 |
(C4×Dic3).182C22 = D6⋊2M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).182C2^2 | 192,287 |
(C4×Dic3).183C22 = C3⋊C8⋊26D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).183C2^2 | 192,289 |
(C4×Dic3).184C22 = C42.198D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).184C2^2 | 192,390 |
(C4×Dic3).185C22 = C42.30D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).185C2^2 | 192,398 |
(C4×Dic3).186C22 = Dic3⋊C8⋊C2 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).186C2^2 | 192,661 |
(C4×Dic3).187C22 = C24⋊33D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).187C2^2 | 192,670 |
(C4×Dic3).188C22 = C12.88(C2×Q8) | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).188C2^2 | 192,678 |
(C4×Dic3).189C22 = C24⋊D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).189C2^2 | 192,686 |
(C4×Dic3).190C22 = C42.274D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).190C2^2 | 192,1029 |
(C4×Dic3).191C22 = C42.277D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).191C2^2 | 192,1038 |
(C4×Dic3).192C22 = C6.102+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).192C2^2 | 192,1070 |
(C4×Dic3).193C22 = C6.62- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).193C2^2 | 192,1074 |
(C4×Dic3).194C22 = C42.89D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).194C2^2 | 192,1077 |
(C4×Dic3).195C22 = C42.91D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).195C2^2 | 192,1082 |
(C4×Dic3).196C22 = C42.93D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).196C2^2 | 192,1087 |
(C4×Dic3).197C22 = C42.96D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).197C2^2 | 192,1090 |
(C4×Dic3).198C22 = C42.97D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).198C2^2 | 192,1091 |
(C4×Dic3).199C22 = C42.98D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).199C2^2 | 192,1092 |
(C4×Dic3).200C22 = C42.99D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).200C2^2 | 192,1093 |
(C4×Dic3).201C22 = C42.104D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).201C2^2 | 192,1099 |
(C4×Dic3).202C22 = C42.105D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).202C2^2 | 192,1100 |
(C4×Dic3).203C22 = C42.108D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).203C2^2 | 192,1105 |
(C4×Dic3).204C22 = Dic6⋊23D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).204C2^2 | 192,1111 |
(C4×Dic3).205C22 = C42.113D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).205C2^2 | 192,1117 |
(C4×Dic3).206C22 = C42.117D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).206C2^2 | 192,1122 |
(C4×Dic3).207C22 = C42.118D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).207C2^2 | 192,1123 |
(C4×Dic3).208C22 = C42.119D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).208C2^2 | 192,1124 |
(C4×Dic3).209C22 = C42.132D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).209C2^2 | 192,1140 |
(C4×Dic3).210C22 = C42.135D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).210C2^2 | 192,1143 |
(C4×Dic3).211C22 = C6.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).211C2^2 | 192,1174 |
(C4×Dic3).212C22 = C6.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).212C2^2 | 192,1220 |
(C4×Dic3).213C22 = C42.137D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).213C2^2 | 192,1228 |
(C4×Dic3).214C22 = Dic6⋊10D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).214C2^2 | 192,1236 |
(C4×Dic3).215C22 = C42.151D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).215C2^2 | 192,1252 |
(C4×Dic3).216C22 = C42.154D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).216C2^2 | 192,1255 |
(C4×Dic3).217C22 = C42.159D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).217C2^2 | 192,1260 |
(C4×Dic3).218C22 = C42.162D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).218C2^2 | 192,1267 |
(C4×Dic3).219C22 = C42.164D6 | φ: C22/C1 → C22 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).219C2^2 | 192,1269 |
(C4×Dic3).220C22 = Dic3⋊4D8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).220C2^2 | 192,315 |
(C4×Dic3).221C22 = Dic3⋊6SD16 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).221C2^2 | 192,317 |
(C4×Dic3).222C22 = Dic3.SD16 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).222C2^2 | 192,319 |
(C4×Dic3).223C22 = (C2×C8).200D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).223C2^2 | 192,327 |
(C4×Dic3).224C22 = Dic3⋊7SD16 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).224C2^2 | 192,347 |
(C4×Dic3).225C22 = Dic3⋊4Q16 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).225C2^2 | 192,349 |
(C4×Dic3).226C22 = Dic3.1Q16 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).226C2^2 | 192,351 |
(C4×Dic3).227C22 = Q8⋊C4⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).227C2^2 | 192,359 |
(C4×Dic3).228C22 = Dic3⋊8SD16 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).228C2^2 | 192,411 |
(C4×Dic3).229C22 = C24⋊5Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).229C2^2 | 192,414 |
(C4×Dic3).230C22 = C8.8Dic6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).230C2^2 | 192,417 |
(C4×Dic3).231C22 = Dic3⋊5D8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).231C2^2 | 192,431 |
(C4×Dic3).232C22 = Dic3⋊5Q16 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).232C2^2 | 192,432 |
(C4×Dic3).233C22 = C24⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).233C2^2 | 192,433 |
(C4×Dic3).234C22 = C8.6Dic6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).234C2^2 | 192,437 |
(C4×Dic3).235C22 = D24⋊7C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 48 | 4 | (C4xDic3).235C2^2 | 192,454 |
(C4×Dic3).236C22 = C24.100D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 48 | 4 | (C4xDic3).236C2^2 | 192,703 |
(C4×Dic3).237C22 = Dic3×D8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).237C2^2 | 192,708 |
(C4×Dic3).238C22 = C24⋊5D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).238C2^2 | 192,710 |
(C4×Dic3).239C22 = C24.22D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).239C2^2 | 192,714 |
(C4×Dic3).240C22 = Dic3×SD16 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).240C2^2 | 192,720 |
(C4×Dic3).241C22 = C24.43D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).241C2^2 | 192,727 |
(C4×Dic3).242C22 = C24⋊15D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).242C2^2 | 192,734 |
(C4×Dic3).243C22 = Dic3×Q16 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).243C2^2 | 192,740 |
(C4×Dic3).244C22 = C24.26D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).244C2^2 | 192,742 |
(C4×Dic3).245C22 = C24.28D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).245C2^2 | 192,750 |
(C4×Dic3).246C22 = D8⋊5Dic3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 48 | 4 | (C4xDic3).246C2^2 | 192,755 |
(C4×Dic3).247C22 = C2×C12⋊Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).247C2^2 | 192,1056 |
(C4×Dic3).248C22 = C2×C4.Dic6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).248C2^2 | 192,1058 |
(C4×Dic3).249C22 = C42.88D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).249C2^2 | 192,1076 |
(C4×Dic3).250C22 = C42.188D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).250C2^2 | 192,1081 |
(C4×Dic3).251C22 = C42.228D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).251C2^2 | 192,1107 |
(C4×Dic3).252C22 = C4×Q8⋊3S3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).252C2^2 | 192,1132 |
(C4×Dic3).253C22 = C42.232D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).253C2^2 | 192,1137 |
(C4×Dic3).254C22 = C12⋊(C4○D4) | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).254C2^2 | 192,1155 |
(C4×Dic3).255C22 = (Q8×Dic3)⋊C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).255C2^2 | 192,1181 |
(C4×Dic3).256C22 = C42.238D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).256C2^2 | 192,1275 |
(C4×Dic3).257C22 = S3×C4⋊Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).257C2^2 | 192,1282 |
(C4×Dic3).258C22 = C42.240D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).258C2^2 | 192,1284 |
(C4×Dic3).259C22 = C2×Dic3⋊Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).259C2^2 | 192,1369 |
(C4×Dic3).260C22 = C2×Q8×Dic3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).260C2^2 | 192,1370 |
(C4×Dic3).261C22 = (C2×C12)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).261C2^2 | 192,1391 |
(C4×Dic3).262C22 = C8×Dic6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).262C2^2 | 192,237 |
(C4×Dic3).263C22 = C42.282D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).263C2^2 | 192,244 |
(C4×Dic3).264C22 = C4×C8⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).264C2^2 | 192,246 |
(C4×Dic3).265C22 = D6.C42 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).265C2^2 | 192,248 |
(C4×Dic3).266C22 = S3×C8⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).266C2^2 | 192,263 |
(C4×Dic3).267C22 = C42.182D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).267C2^2 | 192,264 |
(C4×Dic3).268C22 = D6.4C42 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).268C2^2 | 192,267 |
(C4×Dic3).269C22 = Dic3.M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).269C2^2 | 192,278 |
(C4×Dic3).270C22 = C24⋊C4⋊C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).270C2^2 | 192,279 |
(C4×Dic3).271C22 = C3⋊D4⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).271C2^2 | 192,284 |
(C4×Dic3).272C22 = Dic3⋊M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).272C2^2 | 192,288 |
(C4×Dic3).273C22 = C42.27D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).273C2^2 | 192,387 |
(C4×Dic3).274C22 = Dic6⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).274C2^2 | 192,389 |
(C4×Dic3).275C22 = S3×C4⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).275C2^2 | 192,391 |
(C4×Dic3).276C22 = C42.202D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).276C2^2 | 192,394 |
(C4×Dic3).277C22 = C12⋊M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).277C2^2 | 192,396 |
(C4×Dic3).278C22 = C42.31D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).278C2^2 | 192,399 |
(C4×Dic3).279C22 = C2×Dic3⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).279C2^2 | 192,658 |
(C4×Dic3).280C22 = C2×C24⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).280C2^2 | 192,659 |
(C4×Dic3).281C22 = C12.12C42 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).281C2^2 | 192,660 |
(C4×Dic3).282C22 = C8×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).282C2^2 | 192,668 |
(C4×Dic3).283C22 = Dic3×M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).283C2^2 | 192,676 |
(C4×Dic3).284C22 = Dic3⋊4M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).284C2^2 | 192,677 |
(C4×Dic3).285C22 = C12.7C42 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).285C2^2 | 192,681 |
(C4×Dic3).286C22 = C24⋊21D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).286C2^2 | 192,687 |
(C4×Dic3).287C22 = C2×C4×Dic6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).287C2^2 | 192,1026 |
(C4×Dic3).288C22 = C4×C4○D12 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).288C2^2 | 192,1033 |
(C4×Dic3).289C22 = C2×Dic6⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).289C2^2 | 192,1055 |
(C4×Dic3).290C22 = C2×Dic3.Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 192 | | (C4xDic3).290C2^2 | 192,1057 |
(C4×Dic3).291C22 = C4×D4⋊2S3 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).291C2^2 | 192,1095 |
(C4×Dic3).292C22 = C42.102D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).292C2^2 | 192,1097 |
(C4×Dic3).293C22 = C42.229D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).293C2^2 | 192,1116 |
(C4×Dic3).294C22 = C4×S3×Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).294C2^2 | 192,1130 |
(C4×Dic3).295C22 = C42.131D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).295C2^2 | 192,1139 |
(C4×Dic3).296C22 = C42.233D6 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).296C2^2 | 192,1227 |
(C4×Dic3).297C22 = S3×C42.C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic3 | 96 | | (C4xDic3).297C2^2 | 192,1246 |
(C4×Dic3).298C22 = S3×C4×C8 | φ: trivial image | 96 | | (C4xDic3).298C2^2 | 192,243 |
(C4×Dic3).299C22 = Dic3⋊5M4(2) | φ: trivial image | 96 | | (C4xDic3).299C2^2 | 192,266 |
(C4×Dic3).300C22 = Dic3.5M4(2) | φ: trivial image | 96 | | (C4xDic3).300C2^2 | 192,277 |
(C4×Dic3).301C22 = C42.200D6 | φ: trivial image | 96 | | (C4xDic3).301C2^2 | 192,392 |
(C4×Dic3).302C22 = Dic3×C2×C8 | φ: trivial image | 192 | | (C4xDic3).302C2^2 | 192,657 |
(C4×Dic3).303C22 = Dic3×C4○D4 | φ: trivial image | 96 | | (C4xDic3).303C2^2 | 192,1385 |